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This whitepaper discusses the potential of cyclotron-based decay-at-rest (DAR) neutrino sources
for precision studies and high-sensitivity searches. The project began with development of a CP -
violation search (DAEδALUS)[21, 3]; as the phased plan evolved, another opportunity was discov-
ered, IsoDAR [2, 4]. Since then, wider interest in these neutrino sources has been expressed by the
cross-section [5, 6, 7, 8] and exotic physics search communities [9, 10, 12, 13, 14, 15]. Therefore, we
submit this paper addressing the technology as a generic opportunity, which could conceivably be
implemented by coalitions of universities within the neutrino community. The relatively modest
cost range (from $25M to $100M, depending on design) makes several centers potentially feasible.
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Figure 1: Fluxes from π/µ and 8Li de-
cay at rest.

As neutrino physics enters the precision era, π/µ-DAR and
isotope-DAR beams (e.g., 8Li), in which the energy depen-
dence and the flavor content is precisely known (see Fig. 1),
are valuable. In fact, there is already a history of cross-section
physics from π/µ sources [16, 17, 18]. The primary issue for
precision measurement with these beams is understanding the
absolute normalization. Absolute rates are predicted to ∼20%
[19]. However, depending on the detector and application, one
can potentially normalize to inverse beta decay or to neutrino-
electron scattering, both of which have cross sections known
to < 1%, greatly reducing normalization errors.

The sources can be designed to deliver ∼100 kW to 1 MW,
depending on the flux required. If space is limited, such as at
an underground lab, the optimal energy range for an 8Li DAR
driver is about 60 MeV [20]. A variety of detectors can be used
for studies (see [5] to [15]). The optimal energy is ∼ 800 MeV
for π/µ DAR[21]. The accelerators can also be reconfigured to
provide charged particle beams (isotopes, pions, and muons),
allowing versatility beyond neutrino physics.

While underground facilities and national labs are the most
likely first users of these machines, this price range is within
the scope of a consortium of local universities, and could lead

to “local facilities” that would allow students access to accelerators while remaining at their home
institution. There is industry interest, from production of radio-pharmaceuticals at low energies [22]
to application as drivers for thorium reactors at high energies [23]. Examples are the partnerships
with Best, Inc., AIMA, and IBA formed for tests of the ion source, low-energy beam transport,
and axial injection system for the DAEδALUS project.

Accelerators for America’s Future has stated: “The United States, which has traditionally led
the development and application of accelerator technology, now lags behind other nations in many
cases, and the gap is growing. To achieve the potential of particle accelerators to address national
challenges will require sustained focus on developing transformative technological opportunities...”
[24]. Cyclotrons are a clear example. Though invented in the US, now most cyclotron research and
companies are located outside of the US. The major laboratories involved in this initative (INFN-
Catania, PSI, and RIKEN) are outside the US. On the other hand, the universities involved in this
program are largely US-based. This allows for technology transfer and ensures the next generation
of cyclotron physicists in the US. Through this, the program serves a valuable national interest.
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